Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
These measurements are provided by a differential mobility analyzer operated as a scanning mobility particle sizer, a printed particle optical spectrometer (POPS), and a continuous flow diffusion cloud condensation nuclei (CCN) counter. The instruments sample from either a counterflow virtual impactor inlet or an isokinetic inlet. The measurements provide the mobility aerosol size distribution (30-360 nm), optical size distribution (150 - 6000 nm), size-resolved CCN distribution (30-360 nm) at 0.2, 0.4, 0.6, 0.8, and 1.0% supersaturation. CCN measurements are performed in denuded and undenuded configuration, where denuded refers to the removal of low molecular weight organic vapors. A detailed NetCDF header is included with the datafiles. Users of these measurements are encouraged to consult with the authors about appropriate interpretation before submitting for publication, offering coauthorship where appropriate.more » « less
-
This dataset includes aerosol microphysics and chemical measurements collected at Mt. Soledad and Scripps Pier during the Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE) from February 2023 to February 2024. The measurements include the following instruments at Mt. Soledad: High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, Aerodyne), Scanning Electrical Mobility Spectrometer (SEMS, Brechtel Manufacturing Inc.), Aerodynamic Particle Sizer (APS, Droplet Measurements Technologies), Single Particle Soot Photometer (SP2, Drople Measurements Technologies), Meteorological Station (WXT520, Vaisala), Ozone (Teco), and trace gas proxies (Teledyne). In addition, the analyses of particle filters collected at Mt. Soledad for three dry-diameter size cuts (<1 micron, <0.5 micron, <0.18 micron) and at Scripps Pier for one dry-diametr size cut (<1 micron) by Fourier Transform Infrared (FTIR) and X-ray Fluorescence (XRF) are reported. A differential mobility analyzer operated as a scanning mobility particle sizer (SMPS, TSI Inc.), a printed particle optical spectrometer (POPS, Grimm), and a continuous flow diffusion cloud condensation nuclei (CCN, DMT) counter provide the mobility aerosol size distribution (30-360 nm), optical size distribution (150 - 6000 nm), size-resolved CCN distribution (30-360 nm) at 0.2, 0.4, 0.6, 0.8, and 1.0% supersaturation. Measurements are reported for both sampling from an isokinetic aerosol inlet and from a Counterflow Virtual Impactor (CVI, Brechtel Manufacturing Inc.). Users of these measurements are encouraged to consult with the authors about appropriate interpretation before submitting for publication, offering coauthorship where appropriate.more » « less
-
Abstract Increases in aerosol concentration are well known to influence the microphysical processes and radiative properties of clouds. By reducing droplet size, an increase in aerosol can lessen collision efficiency and increase liquid water path (LWP) in precipitating clouds or enhance evaporation rate and decrease LWP in non‐precipitating clouds. We utilize large eddy simulations to further investigate these aerosol indirect effects in Arctic mixed‐phase clouds and find, in agreement with previous studies, precipitating clouds to experience an increase in LWP and non‐precipitating clouds a decrease in LWP. Most importantly however, our results reveal a different explanation for why such an LWP decrease occurs in decoupled, non‐precipitating clouds. We find enhanced evaporation near cloud top to be driven primarily by a strengthening of maximum radiative cooling rate with aerosol concentration which drives stronger entrainment, an effect that holds true even in clouds that are optically thick.more » « less
An official website of the United States government
